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Abstract
Congestion control (CC) plays a pivotal role in cloud gam-

ing services. However, existing CC methods often cause self-
induced bottleneck queuing. As a result, they may largely
delay game frame transmission and undermine the player’s
gaming experience. We present a new end-to-end CC algo-
rithm named Pudica that strives to achieve near-zero queuing
delay and high link utilization while respecting cross-flow
fairness. Pudica introduces several judicious approaches to
utilize the paced frame to probe the bandwidth utilization ratio
(BUR) instead of bandwidth itself. By leveraging BUR esti-
mations, Pudica designs a holistic bitrate adjustment policy to
balance low queuing, efficiency, and fairness. We conducted
thorough and comprehensive evaluations in real networks. In
comparison to baseline methods, Pudica reduces the average
and tailed frame delay by 3.1× and 4.9× respectively, and
cuts down the stall rate by 10.3×. Meanwhile, it increases the
frame bitrate by 12.1%. Pudica has been deployed in a large-
scale cloud gaming platform, serving millions of players.

1 Introduction
The digital world has been largely on the “cloud”, a metaphor
suggesting that storage- and computation-heavy applications
should be in the ether, available through the Internet whenever
and wherever we need them. The recent emergence of next
generation internet infrastructures such as WiFi-7, 5G, and
full fibre broadband catalyzes more cloud-based applications,
and one of the most notable is cloud gaming. Thanks to the
academic research effort [1–5] and industrial investment [6–
9], cloud gaming has already gained worldwide popularity
while still under rapid growth [10].

In the cloud gaming setup (see Fig. 1), the end device col-
lects user operations (e.g., mouse clicks and finger taps) and
immediately sends them to the cloud server, which runs the
entire game engine. Then, the corresponding game frame is
rendered on the server, streamed to the end device, and dis-
played locally. In this way, the often heavy-duty game engine
is moved to the cloud; the end device is only responsible for
user interactions, and thus, it can be lightweight, portable, and
low-cost while still providing engaging gaming experiences.

This is a promising paradigm for gaming, but a key premise
of this paradigm is that the game frames rendered on the cloud
must be transmitted to the end device at a consistent ultra-low
delay, typically within 50 ms. High frame delays, even if oc-

casional, would severely undermine the gaming interactivity
and in turn the player’s quality of experience (QoE) (see our
studies in §2.3). While many congestion control (CC) algo-
rithms [11–17] have been proposed to restrict the inflation
of bottleneck queuing, none of these solutions actually offers
ultra-low frame delays in both average and tail (§5.2).

Prior delay-aware CC methods [11, 12, 18, 19] strive for
approaching an ideal state with high link utilization, zero
queuing, and fair allocation, which is indeed a state we long
for as well. However, these methods often require a substantial
queue buildup initially to probe the link status before making
adjustments toward the ideal state. The periodic nature of
overshooting-based probing actions leads to frequent self-
induced queuing. Recently, some CC methods [13,20] achieve
low latency in single-flow or isolated environments, but they
fail to maintain low queuing when multiple flows coexist.

To achieve both stringent delay control and the highest pos-
sible bitrate, a cloud gaming system must be equipped with
a carefully designed CC algorithm that meets the following
three requirements. Firstly, it should be able to reach high link
utilization (i.e., efficiency) without resorting to overshoot-
based network probing. Secondly, heavy queuing should be
also prevented when multiple homogeneous flows run concur-
rently. Thirdly, when the link condition suddenly degrades, the
CC agent must promptly react to it and drain the bottleneck
queue (if any) as soon as possible. The last is crucial because
there exists a large amount of urgent bandwidth degradation
on the Internet (see our measurements in §2.2).

With the above principles in mind, we design a new CC al-
gorithm, which we call Pudica1, for large-scale cloud gaming
services. Under the constraint of consistent low frame delay,
Pudica achieves high bandwidth utilization and cross-flow
fairness (if applicable) in both single-flow cases and scenarios
where it contends with other homogeneous flows. Pudica has
been successfully deployed on a commercial cloud gaming
platform (Tencent START [9]), serving millions of players.

Unlike existing CC frameworks [11, 12, 18], which inten-
tionally trigger queue buildups to probe the link condition, we
estimate the link’s bandwidth utilization ratio (BUR) rather
than the bandwidth per se. This signal has been exploited
in [22,23] with explicit notifications, but in the context of end-
to-end CC design, we propose a new probing method with

1Pudica is a plant known for its sensitivity and rapid movement [21].
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Figure 1: A typical cloud gaming system. The congestion controller
adjusts both frame bitrates and packet pacing rates before transmit-
ting game frames from the gaming server to the end device.

adaptive pacing control and complementary probe packets to
estimate the BUR based on end-side feedback.

Based on the BUR estimation, Pudica multiplicatively in-
creases the bitrate to exponentially ramp up the link utilization
while ensuring that it remains below 100%. Then, Pudica can
sustain the state without heavy queuing, and at the same time,
quickly converge toward cross-flow fairness. This is achieved
by applying additive increase (AI) and multiplicative decrease
(MD) simultaneously and adaptively. In addition to smoothed
BUR estimations, short-term BUR signals are also utilized in
Pudica to make prompt reactions to any overshoots or urgent
link degradation. The proposed mechanisms, including tem-
porary bitrate fallback and active queue draining, facilitate
the minimization of queuing delay.

We implemented Pudica and several baselines, including
Copa [11], Salsify2 [13], and SQP [20], on Tencent START
cloud gaming production [9] for A/B tests. The final evalu-
ation involved real-world wired and wireless networks, and
more than 57,000 gaming sessions. In comparison to the
baselines, our experiments confirm Pudica’s advantages: i) It
reduces the average frame delay, the 95%-tailed frame delay,
and the 99%-tailed frame delay by 3.1×, 5.1×, and 4.7×,
respectively. ii) It reduces the percentages of frames whose
transmission to the end device exceeds 100 ms and 200 ms by
6.2× and 14.4×, respectively. And iii) it increases the frame
bitrate by 12.1%, better utilizing networks’ capacity.

Furthermore, we used a large-scale, in-the-wild network
testing platform [24] to assess Pudica’s efficiency and fair-
ness. It shows that Pudica offers a superior balance between
link utilization, cross-flow fairness, and convergence speed.
Additionally, we conducted comprehensive microbenchmarks
to justify the gains offered by Pudica.

2 Background and Related Work
In this section, we introduce the control variables, network
characteristics, and control objectives of cloud gaming sys-
tems, which necessitates a new CC algorithm. We also review
related CC algorithms and discuss their limitations.

2.1 Congestion Control for Cloud Gaming

Unlike the traditional transport-layer CC, the cloud gaming
CC agent operates on the application layer, and controls two

2In this paper, Salsify refers to its frame size control part solely.

factors on the fly, namely the frame bitrate and packet send-
ing pace (see Fig. 1). The bitrate is a parameter to the im-
age compression process that encodes the stream of game
frames before sending them to the end device. A lower bi-
trate reduces the bandwidth consumption but also sacrifices
displayed quality. The game frames after compression are
chopped into network packets, and the sending pace controls
how hastily the packets are sent to the network. Typically,
the sending interval of packets within a frame is the same.
Thus, we measure the pace based on the sending behavior of
the last packet for each frame. We quantify the pace using
a pace multiplier ρ, a scalar indicates that the last packet is
sent to the network within the time duration of L/ρ, where L
is the interval of frame sending (16.67 ms for the frame rate
of 60). For example, a pace with a multiplier of two means
that all packets of a frame are sent over within 8.34 ms after
encoding. Given a pace multiplier, the exact packet sending
interval (a.k.a., packet pacing rate) depends on the number
of packets within a frame, which is in turn up to the frame
bitrate, or more precisely, the frame size.

2.2 Network Measurement in Real Gaming Systems

We present two observations from real cloud gaming systems,
which greatly influence the rationale behind our CC design.

Short base RTTs. Edge computing has become the de facto
infrastructure for cloud gaming services in industry [2, 25],
which dramatically shortens the feedback loop of CC agents.
We conducted measurements of the base RTT (a.k.a, minimal
RTT) for over one million real cloud gaming sessions. As
depicted in Fig. 3, the base RTT for 50% and 90% gaming
sessions is below 10 ms and 20 ms, respectively, for both Eth-
ernet and WiFi networks. Such unique network characteristics
play an important role in our CC design. It not only helps
us narrow down the scope of issues to be addressed but also
opens up new possibilities for achieving a more suitable CC
solution for cloud gaming systems.

Frequent urgent bandwidth decreases. The available
bandwidth frequently encounters urgent, large reductions over
the Internet, e.g., due to channel degradation. We carried out
the consistent bandwidth measurement by mildly flooding-
based probing methods. The bandwidth was estimated and
recorded with a granularity of 100 ms interval. As shown in
Fig. 4, approximately 5.6% of Ethernet users and 35.5% of
WiFi users encounter at least five occurrences of dramatic
bandwidth reduction (i.e. reduction by more than 50% within
100 ms) per minute, which poses a non-trivial challenge to
achieving consistent low latency in real-world networks.

2.3 Control Goals through Real-World Case Studies

In this section, we crystalize our congestion control goals
through real-world case studies of user engagement on Ten-
cent START cloud gaming app [9].

We conducted case studies on two popular games, a multi-
player online battle arena (MOBA) game and a first-person
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Figure 2: A case study on cloud gaming QoE analysis: the effects of stall rate (i.e., the frame ratio with delay >100ms), average frame delay,
and average bitrate on playing time (as a proxy of QoE). The dataset involves two hot games (i.e., MOBA and FPS) and one million gaming
sessions from a production cloud gaming service. Transmission-unrelated factors, such as decoding delay, are excluded from these metrics.
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Figure 3: Base RTTs in edge-
based cloud gaming services.
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Figure 4: Num. of bandwidth re-
ductions (≥ 50%) per minute.

shooting (FPS) game. We collected logs of more than a mil-
lion gaming sessions to study how network performance af-
fects user engagement in gaming. Following [26], we use the
user playing time (i.e., the length of a gaming session) to mea-
sure user engagement. We consider three metrics for network
performance: the average delay of game frames, the average
bitrate, and the stall rate. The last measures how often a player
experiences a stall, defined as the percentage of frames whose
delivery to the user device is delayed by more than 100 ms.

The results of our studies are plotted in Fig. 2. The stall
rate has a significant impact on user engagement (Fig. 2a):
as the stall rate increases linearly, the playing time rapidly
decreases in a superlinear manner. Average frame delay also
affects gaming engagement (Fig. 2b). But when the average
delay is sufficiently small (e.g., <40 ms), the negative impact
caused by an increased average delay is not as significant
as the stall rate, which reflects the long-tailed portion on the
distribution of frame delays (as opposed to the average delay).
Not surprisingly, the bitrate is also crucial to the user engage-
ment, since it determines the image display quality (Fig. 2c).
Lastly, Fig. 2d illustrates the percentage of sessions that re-
ceived user complaints with respect to different ranges of stall
rates. When the stall rate is in [1‰,1%), the percentage of
user-indicated unappealing gaming sessions is 10× more than
the percentage when the stall rate is within [0,1‱).

Our CC goals. To reduce the frame delay and stall rate, we
aim to achieve ultra-low (or nearly zero) queuing delay at the
bottleneck. To achieve the highest possible bitrate, we seek
to maximize bandwidth utilization; however, it should be pur-
sued only after the achievement of low frame delays. A high
bitrate with a high frame delay or stall rate is meaningless for
cloud gaming. We also value fairness among homogeneous
flows. It is noteworthy that, we specifically focus on achieving
frame-level zero queuing, which directly impacts the QoE.
This means that the queue induced by a frame should be
drained by the time the next frame arrives at the bottleneck,

rather than aiming for no queuing for every packet, although
these two levels of queuing are correlated.

2.4 Existing CC Solutions and Their Limitations

Many CC algorithms have been proposed with the aim of
reducing end-to-end delay, but they cannot simultaneously
fulfill the three specific requirements we mentioned in §1.

Delay-bounding CC. In previous studies, various delay-
bounding CC algorithms [11, 18, 19, 27–34] has been pro-
posed. Most of these algorithms, such as BBR [18] and PCC
Vivace [19], periodically increase packet sending rate beyond
the estimated bandwidth in order to dynamically probe net-
work bandwidth. This strategy, however, leads to frequent
queue buildup, and thus may cause the delay to oscillate per-
sistently even when the bandwidth stays stable. Other algo-
rithms (e.g., Vegas [27], Fast [28], and Copa [11]) use packet
delay as the congestion signal to avoid bufferbloat. When the
bottleneck queue is nearly empty, these methods tend to reck-
lessly raise the sending rate (even with an increasing step size)
until the queue is constructed, since these delay-based meth-
ods can only accurately assess link utilization when there is
sufficient queuing in the network. Thus, their CC frameworks
are fundamentally unable to maintain zero queuing.

RTC-oriented CC. Recent years have also witnessed the
development of CC algorithms specifically for real-time com-
munication (RTC) applications [12–17,35]. GCC [12] reduces
the bitrate only when the delay variation, rather than the delay
per se, becomes high. So, GCC is unable to empty the queue
promptly when an urgent congestion occurs. Similar to packet
delay-based methods, the network estimator in GCC works
only when there exists enough queuing in the network. As a
consequence, GCC has to often introduce queue buildups by
itself (as illustrated in Fig. 16, Appendix).

Salsify [13] (built upon Sprout [29]) adjusts frame sizes
based on the estimation of packet inter-arrival time. Using
samples in a short time scale for estimation, Salsify is sensible
to network changes and can respond to congestion quickly.
However, in real networks, the inter-arrival time at the packet
level suffers from significant fluctuations, which raise the
chances of estimation mistakes. Additionally, Salsify, which
is designed based on the assumption of independent queues,
is unable to detect other competing flows unless they intersect.
Furthermore, the aggressiveness of Salsify magnifies the im-



pact of estimation errors stemming from the aforementioned
issues, ultimately leading to suboptimal performance.

SQP [20] utilizes frame-based packet trains to estimate
available bandwidth and adjusts the frame bitrate with AIMD-
style updates. This approach may allow SQP to achieve high
link utilization and avoid heavy queuing in an isolated envi-
ronment. However, when multiple flows coexist, SQP faces
challenges in accurately estimating the available bandwidth,
especially when the flows are staggered. This may result in
overshoots and queue buildups. Furthermore, SQP tries to
achieve competitive bandwidth shares when competing with
queue-building flows and may incorrectly identify a network
degradation as the competition of buffer-filling flows (as ex-
plained in Fig. 12). Consequently, SQP fails to promptly drain
the bottleneck queue in such situations.

3 Challenges and Rationale
Before diving into Pudica’s algorithmic details (in §4), we de-
scribe the challenges that Pudica aims to address for clouding
gaming applications and the rationale that leads to its design.

3.1 Network Probing and Estimation

Existing bandwidth estimation methods are unable to sustain
a nearly empty bottleneck queue at the frame level. In Pudica,
we opt to estimate the BUR (i.e., bandwidth utilization ratio)
rather than the bandwidth itself, and to achieve this, we design
a new network probing method.

Limitations of traditional methods. Many CC algorithms
aim to estimate the available bandwidth or capacity between
two ends of a connection [18–20]. Here, to eliminate ambigu-
ity, we refer to [36] to define the term "available bandwidth"
as the maximum rate that the path can provide to a flow,
without reducing the rate of the rest of the traffic. Similarly,
"available capacity" is defined as the amount of data that
can be inserted into a network path at a certain time, so that
the transit delay of these packets remains within a specified
maximum permissible delay (for further details, refer to [36]).

For estimating bandwidth or capacity, most of the existing
frameworks require the intentional and periodic introduction
of heavy queuing at the bottleneck to assess whether the link
is fully utilized. This network probing method is not at our
disposal, because we aim for a consistently empty queue. Re-
cently, a few low-latency CC methods try to probe the link
condition without resorting to heavy queuing [13, 20]. How-
ever, these designs often begin with a potential assumption
that the sender runs in a single-flow environment, without
giving due consideration to the collective dynamics of multi-
ple flows. This oversight may result in an overestimation of
available network resources when multiple streams coexist.

In fact, even with exact knowledge of the remaining band-
width or capacity, we cannot guarantee a rate increase without
surpassing the available resources. This is due to the fact that,
as an end-to-end CC agent, we lack information regarding
the number of flows utilizing the identical bottleneck link,
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Figure 5: An illustration of our BUR probing and estimation method
with the router acting as the bottleneck.

and consequently, an appropriate allocation for aggregated
resources remains unattainable. This limitation is inherent to
the signal of available bandwidth/capacity.

What to estimate? As will be mentioned repeatedly, it
is the requirement of nearly zero queuing delays for game
frames that profoundly shapes Pudica’s design in many as-
pects. As the prerequisite for control actions, not only should
the probing process keep no queuing, but the chosen signal
after probing must also enable the rate controller to avoid
queue buildups during the efficiency-convergence process,
particularly when multiple streams coexist.

Inspired by VCP [23], Pudica probes the BUR as a feedback
signal for CC, rather than the bandwidth per se. The BUR, a
scalar, is defined as the ratio of current bandwidth usage to the
link capacity, which provides an indicator of the precise level
of link utilization. It not only indicates whether congestion is
occurring (congested when BUR >1), but also distinguishes
between different utilization regions. As proved by [23], by
leveraging the BUR information, we can achieve efficiency
and fairness under the constraint of consistently low queuing,
regardless of the number of concurrent flows or link capacity.

How to probe? Our goal is to estimate BUR by relying
solely on end-to-end feedback. Basically, a queuing delay
greater than zero serves as a reliable indicator of the full-
load duration at the bottleneck. Since we aim for nearly zero
queuing at the frame level, for probing BUR, packet-level
queuing delay must be introduced judiciously.

To illustrate this, we present an example in Fig. 5, where
the router acts as the bottleneck. In the absence of cross traffic
(refer to Fig. 5a), all packets of a frame are transmitted in a
bursty manner by the sender between time t0 and t1, and they
reach the router between time t ′0 and t ′1. Due to the limitation
of network bandwidth, the queuing time of the last packet can
be denoted as (t ′′1 − t ′′0 ), during which the link utilization is
100%. In this case, the bandwidth utilization can be calculated
as (t ′′1 − t ′′0 )/L = (t ′′′1 − t ′′′0 )/L = (t ′′′1 − t0 −Dmin)/L, where
Dmin is the minimum one-way delay from the sender to the
receiver, and L is the interval of frame sending.

However, when cross traffic exists, traffic arriving at the
router after t ′1 cannot be detected by the receiver. To address



this issue, we intentionally slow down the frame transmis-
sion slightly, allowing a portion of the cross traffic to arrive
between t ′0 and t ′1, as depicted in Fig. 5b. This enables the
receiver to observe the presence of such traffic. Although
extending the time period between t0 and t1 allows for more
cross traffic to arrive in this period, once the instantaneous
utilization drops below 100%, the packet-level queuing delay
becomes zero, and then we lose the ability to determine the
level of bandwidth utilization accurately. Therefore, our goal
is to send each frame as slowly as possible while maintaining
a packet-level queuing delay greater than zero (at least for the
last packet of each frame). To achieve this, we dynamically
and adaptively adjust the pace multiplier. As a result, we can
still basically estimate the BUR as (t ′′′1 − t0 −Dmin)/L, which
remains consistent with the no-cross-traffic cases.

Nonetheless, we are actually uncertain about the cross traf-
fic arriving after t ′1. To complement this, we employ a small
number of extra probe packets beyond frame data to measure
the queuing time and robustify the BUR estimation. Even
though a competing flow that consistently sends at a low rate
and causes zero queuing delay may still go undetected, this
complementary probing mechanism can greatly reduce the
occurrence of BUR underestimation (see Fig. 7). Furthermore,
the lack of awareness of such low-rate flows diminishes as
the link utilization approaches 100%.

3.2 Bitrate Adaptation based on BUR Estimations

Basically, Pudica utilizes BUR estimation to dynamically ad-
just the frame bitrate. When BUR is low, we multiplicatively
increase the rate for efficiency; when BUR is high (but less
than one), we operate AI and MD for fairness; when BUR
exceeds one, we reduce the bitrate to quickly drain the bottle-
neck queue. Within this framework, Pudica introduces several
meticulously designed methods to minimize queuing delay.

Coping with queuing caused by possible estimation errors.
Despite significant improvements in the accuracy of BUR
estimation, we acknowledge that there is still a gap between
the predicted value and the actual value. Therefore, we rec-
ognize the need for adaptive steps in bitrate upgrading, i.e.,
the step should be smaller (applied more cautiously) as the
BUR increases. Furthermore, we design a temporary fallback
mechanism to minimize the adverse effects of potential es-
timation errors. Specifically, Pudica timely and moderately
reduces the bitrate whenever it detects a significant delay in
any individual frame. To enhance resilience against jitters,
this reduction is limited to the subsequent frame only, ensur-
ing its transient nature. This fallback strategy is particularly
useful for cloud gaming due to the smaller RTT (§2.2). With
shorter feedback loops, we can effectively manage the effects
of minor overshoots through prompt corrections.

Balancing fairness and queuing. A common way to pro-
mote fairness in CC design is through additive increase and
multiplicative decrease (referred to as AI/MD) of the bitrate. It

additively increases the bitrate until a high queuing delay (or
overflow-induced packet loss) is detected, and then it switches
to multiplicatively decrease the bitrate.

Again, for cloud gaming this strategy falls short, because
we wish to minimize queue buildups. We therefore propose
a different strategy: While we additively increase the bitrate,
we do not wait until the queue is built up to begin the MD op-
eration. Instead, we apply MD earlier, concurrently with each
AI action, to proactively free up a portion of bandwidth before
the bitrate causes any queue buildup. In this way, MD-based
de-allocation occurs simultaneously with AI-based allocation,
executed more frequently as well. Thereby, fairness across
competing flows can be reached in a faster way while avoid-
ing excessive queuing. To distinguish it from the traditional
AI/MD, this strategy is referred to as AI-MD.

Yet, a naïve implementation of AI-MD with fixed MD am-
plitudes and AI steps may hinder link utilization. For instance,
in high-bandwidth scenarios, the de-allocation amount from
the MD operation may exceed AI’s allocation, leading to a
bitrate decrease even with a low utilization of overall band-
width. Our remedy to this limitation is by applying bitrate
AI in an adaptive manner. The step of AI gradually increases
from an initial small value until the link is close to being
fully utilized. This approach ensures high utilization and low
queuing during the convergence process toward fairness.

Handling bandwidth fluctuations. As a commercially de-
ployed system, Pudica must be able to cope with frequent
network fluctuations, especially urgent bandwidth degrada-
tion (which has been shown in §2.2). When the link degrades,
a belated bitrate reduction would result in severe queuing;
conversely, a timely response to this degradation would sig-
nificantly reduce the tailed delay and stall rate.

To achieve a timely response to bandwidth reduction, Pu-
dica relies on not only the smoothed BUR estimation but
also the BUR feedback from the latest frames, to judge if
congestion has occurred. When the BURs of three consecu-
tive frames both exceed one, Pudica will reduce the bitrate
to a value below the packet receiving rate. The underlying
insight is that when the link utilization exceeds 100%, the
short-term receiving rate can serve as a dependable indicator
of the achievable maximum throughput. At this time, if every
flow in the network can set its bitrate below the receiving rate,
the queue at the bottleneck can be drained quickly.

4 Pudica Design
We propose a new probing framework that achieves high-
accuracy BUR estimation. By leveraging both smoothed
(from long-term history) and short-term BUR estimations,
we design multiple bitrate control strategies to enhance effi-
ciency and fairness while minimizing the queuing delay. We
provide a brief overview of our control policy:
• MI for efficiency when smoothed BUR (or R̃) is low;
• AI-MD for fairness when R̃ is high but not more than one;
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• MD for queue draining when short-term BUR exceeds one.

4.1 BUR Probing and Estimation

Pudica utilizes all packets within each game frame as a short
burst (namely a packet train) to probe the link utilization (i.e.
BUR). To improve the accuracy of BUR estimation, Pudica
introduces an innovative adaptive pacing control algorithm,
accompanied by a complementary approach that uses a small
number of probe packets to detect competing flows.

As illustrated in Fig. 5 and §3.1, during the period of
[t0 +Dmin, t ′′′1 ], the queuing delay keeps non-zero, and in turn,
the bottleneck link is fully utilized. We refer to this period
as the sensible period. On the contrary, [t ′′′1 , t0 +L+Dmin] is
the agnostic period, during which there is no feedback from
the network. We adaptively adjust the pace multiplier such
that it introduces just a slight amount of packet-level queuing
for effective probing while maximizing the duration of the
sensible period. In the agnostic period, we insert several addi-
tional probe packets without payload to measure the potential
queuing time during this period.

BUR estimation. We estimate the BUR of a frame (denoted
by R) by calculating the difference between the transmission
delay of this frame and the physically minimal delay:

R =
D−Dmin

L
. (1)

Here, D is the one-way frame delay (in sec), i.e., the duration
from the sent time of the first packet to the received time of
the last packet for this frame. Dmin (in sec) is estimated as the
smallest packet one-way delay over the period of ten seconds.
L is the interval of frame sending (in sec). There is no clock
synchronization issue here, as the same errors for both D and
Dmin cancel each other out.

Adaptive pacing control. To extend the sensible period
while sustaining a slight burstiness, Pudica dynamically sets
the pacing multiplier ρ as:

ρ =
γρ

min( R, 1 )
, (2)

where γp is a constant greater than one, empirically assigned
a value of 1.25. Using this method, the sending duration be-
tween the first packet and the last packet in a frame (i.e.,
t1− t0 in Fig. 5) is slightly shorter than the queuing delay (i.e.,
D−Dmin), which introduces just a slight packet-level queuing
in the bottleneck buffer. By bounding the denominator up
to one, all packets of each frame are sent within the frame
interval, to avoid superfluous waiting time at the sender.

Competing flow detection with probe packets. To detect
potential competing flows after the sensible period, Pudica
sends Npacket (set as four) payload-free probe packets during
the agnostic period, as illustrated in Fig. 6. These probe pack-
ets are sent out evenly, i.e., the sending interval Tpacket (in sec)
between probe packets is set to be (1−1/ρ)×L

Npacket+1 .
Then, Pudica uses the feedback of probe packets to robus-

tify the BUR estimation within this frame interval. Let Di
denote the one-way delay (in sec) of the i-th probe packet
(i = 1, . . . ,Npacket). If the competing flows that occupy the
network resource during the agnostic period block the probe
packets, the queuing delay Ti, i.e., Di−Dmin, for the i-th probe
packet will be non-zero and should be taken into account.

However, the queuing delay also occurs when probe pack-
ets are blocked by the game frame data sent by Pudica itself.
Such queuing delay needs to be removed as it has already
been counted in the sensible period. If the frame data delays
the i-th probe packet, the actual queuing delay caused by com-
peting flows is the duration (in sec) between the arrival of
the frame’s last packet to the arrival of the i-th probe packet.
Such delay is smaller than Di −Dmin in this case, defined as
Hi. So far, a reasonable queuing delay can be expressed as:

Ti = min( Di −Dmin, Hi). (3)
Furthermore, if the queuing delay of the i-th probe packet

(i.e., Ti) is larger than the packet sending interval (i.e., Tpacket ),
it will also affect the queuing delay of the following probe
packet (i.e., Ti+1). To avoid repetitively counting the queuing
delay that has been already experienced by the previous probe
packets, Ti should be bounded by Tpacket in computation. The
rectified queuing delay is finally defined as:

Ti = min( Di −Dmin, Hi, Tpacket ). (4)
With the above analysis, Pudica can leverage the cross-

traffic-induced queuing delay of probe packets to obtain a
more accurate BUR estimation, i.e., Rcorrected :

Rcorrected = R+Σ
Npacket
i=1

Ti

L
. (5)

Validation of usefulness. We validated the effectiveness
of our BUR estimation method through a large-scale Internet
test. The details of the validation methodology are explained
in Appendix A. Fig. 7 depicts the BUR estimation perfor-
mance of different probing methods. Our probing approach
(see Fig. 7d), which incorporates both adaptive paces and ex-
tra probe packets, outperforms other alternatives in accurately
estimating BUR. Furthermore, as the actual BUR increases,
the estimation distributions exhibit reduced variance, indicat-
ing enhanced reliability. Fixed 2× pacing (used in SQP [20],
see Fig. 7a) and burst sending (see Fig. 7b) are prone to
unawareness of competing flows and consequently lead to
BUR underestimation, particularly in high-utilization scenar-
ios. The use of probe packets not only corrects unawareness-
induced BUR underestimation, but also guides the pacer to-
ward smaller multipliers. This, in turn, extends the sensible
period and enhances the precision of BUR estimation.
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(a) Fixed paces (2× pacing).
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(b) Fixed paces (burst sending).
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(c) Adaptive paces (w/o probe packet).
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(d) Pudica (complete).
Figure 7: Validation of various BUR estimation methods. Each method involves more than 2,000 groups of test data in real networks. Our
method, which combines adaptive paces and probe packets, significantly improves the accuracy of BUR estimation over the alternatives.

4.2 Bitrate Adaptation over the Smoothed BUR

In this section, we introduce how Pudica leverages a smoothed
BUR estimation as an indicator to dynamically adjust its bi-
trate for optimizing link utilization and cross-flow fairness
while sustaining near-zero bottleneck queuing.

Smoothed BUR computation. To obtain the smoothed
BUR (a scalar, denoted by R̃), we utilize historical BUR esti-
mation samples from Nsample frames over the past Twd ms. Twd
is set to 200, as most flows have base RTTs less than 200 ms.
This choice strikes a balance between the likelihood of aware-
ness for competing flows and the freshness of the data [23].
We employ the weighted average method to calculate R̃ as:

R̃ = ∑
Nsample
k=1 ωk ×Rk ×

B
Bk

, (6)

with weight coefficients ωk subject to ∑
Nsample
k=1 ωk = 1 (detailed

in Appendix B). Here, Rk and Bk represent the BUR feedback
and bitrate of the k-th frame, respectively. B is the current
bitrate for frame encoding, which is dynamically updated on
the fly. To address possible differences between B and Bk
(both in units of Mbps), we use the ratio of the two values
to rectify any deviation and ensure that the smoothed BUR
estimation aligns with the current state.

Multiplicative increase (MI) for efficiency. Similar to
VCP [23], Pudica decouples efficiency control and fairness
control. When the smoothed BUR estimation (i.e., R̃) is low,
Pudica prioritizes efficiency over fairness, by adjusting bi-
trate with MI operations. Then, when R̃ is high but less than
one, the goal of Pudica is to converge toward fairness while
maintaining nearly full utilization (will be introduced later).

Pudica employs a threshold, denoted by α, to determine
whether to activate the efficiency control or fairness control
phase. The value of α is empirically determined to be 0.85.
When R̃ ≤ α, the bitrate is multiplied to rapidly converge
toward efficiency, which can be expressed as:

Bnew = B× (1+ξ), (7)

ξ = γMI ×
(α+1)/2− R̃

R̃
, (8)

where γMI is a discounting coefficient, empirically set as 0.3.
Note that the next adjustment is postponed until the feedback
regarding the current adjustment is received, to prevent over-
aggressive rate increases and mitigate bitrate oscillation.

Simultaneous AI and MD for fairness. When R̃ > α, we
do not apply the traditional AI technique which linearly in-
creases the bitrate until the queue is built up. Instead, Pu-
dica operates AI and MD bitrate adjustment simultaneously
(namely AI-MD), by replacing the fixed AI step (used in clas-
sical AI/MD frameworks) with an adaptive step A :

Bnew = B+A , (9)

A = I − γMD ×B, (10)
where I is the linear part of the adjustment step (in Mbps), and
γMD is the MD parameter of the multiplicative part (set to be
0.05, empirically). Simultaneously performing AI and MD in
one step significantly augments the prospects for bandwidth
reallocation, thereby accelerating the convergence to fairness.
In practice, we enforce both upper and lower bounds on A to
prevent excessive bitrate oscillation during this stage.

Given an MD ratio (i.e., γMD), a fixed linear increase (i.e.,
I) may be too small to fully utilize bandwidth for a high link
rate, or conversely, it may cause rate oscillation and delay
spikes for low link bandwidth. To solve this dilemma, we
design an AI step adaptation mechanism to match the link
rate. Specifically, the value of I is determined by the equation
(Bmax +

2τ

log(B) )× ( γMD
2 ). Here, Bmax is the maximum bitrate

limited by the application (set as 50 Mbps in our implementa-
tion). τ denotes the accumulated number of received frames
after initialization (discussed later). This equation is designed
to be inversely related to the current bitrate B, to enhance
fairness convergence by increasing the value of I more slowly
for flows with higher bitrates.

Since the value of I keeps increasing, Pudica resets τ to
be zero when R̃ > 1, in order to prevent a heavy queuing
caused by an overlarge I. This initialization method relies on
BUR estimations, which may not be flawless. Thus, Pudica
further implements a time-driven initialization mechanism
to avoid severe unfairness. To be specific, τ is initialized
every five seconds. This periodical and highly synchronized τ

initialization enhances the robustness of our AI-MD scheme.
By applying AI-MD with an adaptive AI step, Pudica can
achieve faster convergence to fairness while avoiding frequent
queue buildups (further illustrated in Appendix C).

4.3 Bitrate Adaptation over the Short-Term BUR

Using a smoothed BUR estimation that combines multiple
BUR samples from the past can provide more robustness to



network noises, compared to relying solely on a single-frame
BUR. However, due to its lagging nature, the smoothed BUR
may not be able to respond promptly to improper control de-
cisions or sudden network changes. To address this issue and
achieve more timely adaptations, we propose two additional
bitrate adjustment approaches that utilize the short-term BUR,
particularly the BUR of recently received frames. By combin-
ing the responsiveness of short-term BUR with the robustness
of smoothed BUR, Pudica strikes a superior balance between
timeliness and stability in bitrate control.

Temporary bitrate fallback. Upon detecting a potential
overshoot or congestion for the first time, Pudica instantly
takes action by temporarily reducing the bitrate. Specifically,
when the BUR feedback of any single frame exceeds one,
Pudica will reduce the bitrate by ζ (set to be 15%, empirically)
for the subsequent frame to be encoded. This bitrate reduction
is temporary, meaning that after adjusting the bitrate for the
next to-be-encoded frame, the encoder will revert back to the
previous bitrate setting.

It is important to highlight that in cases of sudden conges-
tion, the sender may experience delays in receiving feedback
regarding network degradation, which can lead to delayed
bitrate fallback. To address this issue, we monitor the frames
that have been sent to the network but have not yet been ac-
knowledged. We introduce the concept of next delay, which
represents the elapsed time from the moment the next to-be-
received frame (i.e., the earliest sent frame among the in-flight
frames) was sent until the current time. When the next delay
is significant, Pudica performs the bitrate fallback as well.
The introduction of the next delay signal enables Pudica to
respond to congestion more swiftly and timely.

This fallback scheme could reduce queue buildups caused
by potential overshoots since we acknowledge the inherent
difficulty in achieving flawless BUR predictions. The tran-
sient nature of the bitrate reduction helps minimize the impact
of incorrect fallback due to jitter-induced delay variations.

Active queue draining. When the BUR feedback of three
recently received frames both exceeds one, Pudica enters the
queue-draining phase with active undershooting. At this time,
the bitrate is set to be:

Bnew = α× receiving_rate−draining_rate, (11)

where receiving_rate is the average data receiving rate from
the onset of congestion to the present moment. It serves as
a reliable estimation of the maximum throughput achievable
during this period. Additionally, Pudica employs a calculation
to determine the required additional throughput rates (referred
to as draining_rate) needed to clear the self-induced queuing
at the bottleneck within the next 200 ms. Here, the volume
of self-induced queued data is quantified by measuring the
number of in-flight packets. By carrying out an active queue
draining over the Eq. 11, Pudica is able to efficiently and
swiftly empty the existing queue at the bottleneck.

Algo. Avg.
delay

95%/99%
-tile delay

Stall rate
>100/200ms

Avg.
bitrate

Copa 26.9ms 47.2/79.9ms 1.68%/0.77% 42.9Mbps
Salsify 21.5ms 30.0/67.0ms 0.48%/0.09% 42.4Mbps
SQP 41.8ms 101.7/147.8ms 1.27%/1.03% 43.7Mbps

Pudica 19.5ms 25.0/30.6ms 0.07%/0.004% 47.5Mbps
Table 1: Overall system-level performance at scale (Ethernet).

Algo. Avg.
delay

95%/99%
-tile delay

Stall rate
>100/200ms

Avg.
bitrate

Copa 76.5ms 305.2/672.8ms 7.7%/3.9% 22.6Mbps
Salsify 195.5ms 631.7/982.5ms 22.9%/13.5% 32.6Mbps
SQP 302.2ms 815.2/1218.5ms 10.3%/8.7% 23.2Mbps

Pudica 33.7ms 74.9/175.6ms 2.5%/0.72% 31.2Mbps
Table 2: Overall system-level performance at scale (WiFi).

On the other hand, when the congestion vanishes, gradually
increasing the bitrate from a low value can lead to suboptimal
utilization due to the delayed nature of smoothed BUR estima-
tion. Therefore, when the BUR of a recently arrived frame is
less than one, Pudica recalculates the current receiving_rate
and directly restores the bitrate to match it. Considering the
delay sensitivity of the queue draining mechanism, this one-
step recovery scheme improves resilience to network jitters
and consequently enhances link utilization, by promptly re-
covering when the delay returns to normal.

5 Evaluation
We deployed Pudica and the state-of-the-art CC algorithms
on a commercial cloud gaming platform, and conducted ex-
tensive evaluations in real-world wired and wireless networks.
We also evaluated the ability of convergence to efficiency
and fairness through a large-scale, in-the-wild network testing
platform. We demonstrated the reason for Pudica’s gain by
miscellaneous emulation experiments. Finally, we proved the
effects of several selected algorithm components on end-to-
end performances by microbenchmarks. All timeline-based
line charts in this section are presented at a frame-wise level.

5.1 Methodology for Large-Scale Algorithm Evaluation

We deployed four CC approaches, including Pudica, Sal-
sify [13], Copa [11], and SQP [20] on Tencent START cloud
gaming platform [9] for large-scale A/B tests3. The START
system integrates the customized network protocol stack and
video codec, supporting submillisecond-class pacing, packet-
level acknowledging, and frame-level size control.

Experiment setups. Our commercial system operates on
fully public networks over the Internet. The evaluation fi-
nally involved more than 57,000 gaming sessions across 15
cities, two network types (Ethernet and WiFi), and three ISPs
over five weeks. We randomly chose one of the CC algo-
rithms for each session and kept the other system modules the
same for a fair comparison. We set the frame rate as 60 and
the maximal bitrate as 50 Mbps4 for all algorithms. We set

3A preliminary emulation experiment is conducted in Appendix D.
4In production cloud gaming services, the gaming bitrate above 50 Mbps

is bandwidth-costly with low marginal benefits on player QoE.
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Figure 8: Performance at scale on a commercial cloud gaming platform over the Internet (Ethernet). X-axis in some figures is in log scale.
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Figure 9: Performance at scale on a commercial cloud gaming platform over the Internet (WiFi). X-axis in some figures is in log scale.

the delay constraint as (L+Dmin) in Salsify. Following [20],
Copa was implemented with a setting of δ = 0.1 and without
mode switching. For CWND-based methods, the frame bitrate
was determined based on the ratio of the CWND size to the
smoothed RTT.

Evaluation metrics. To evaluate operation interactivity, we
computed several metrics for each gaming session, including
the average, 95%ile, and 99%ile round-trip frame delay, and
the stall rates for frame delays exceeding 100 ms and 200 ms.
For display quality, we computed the average values of frame
bitrate and valid bitrate for each session. The valid bitrate
refers to the average bitrate of frames that have a low delay,
specifically less than 50 ms. While a delayed frame may have
a high bitrate, the information it carries could be outdated and
therefore useless to the player experience.

5.2 System-Level Performance at Scale

We list evaluation results by averaging across all sessions
in Tab. 1 and Tab. 2, and we plot the CDF curves of the
various metrics in Fig. 8 and Fig. 9. In summary: i) Pudica
significantly reduces frame delay and stall rate, and cuts the
delay tail. ii) Pudica achieves an equivalent or higher bitrate.
iii) Pudica strikes a better balance between delay and bitrate.

Average and tailed frame delay. Fig. 8a–8d illustrates that
compared to the baselines, Pudica reduces the frame-level
average delay, 95%ile delay, and 99%ile delay by 1.5×, 2.4×,

and 3.2×, respectively, over Ethernet networks. Similarly,
over WiFi networks (Fig. 9a–9d), the corresponding reduc-
tions are 5.7×, 7.8×, and 5.5×, respectively. We observed
that Salsify experienced lower delays in situations of highly
underutilized bandwidth (especially on wired networks) due
to its relatively bursty sending, as compared to methods with
conservative pacing control. However, Salsify exhibited exces-
sive sensitivity to intensive packet arrival or jitters, which are
common occurrences in WiFi networks, leading to dramatic
overshoots, high queuing delays, and frequent stalls.

Stall rate. Compared to the alternatives, Pudica reduces the
stall rate with thresholds of 100 ms and 200 ms by 16.3× and
22.5×, respectively, over Ethernet networks (Fig. 8e–8f). On
WiFi networks (Fig. 9e–9f), the reductions are 5.5×–12.1×.
We noticed that many users had access to sufficiently high
bandwidth, and as a result, experienced negligible stall rates
regardless of the CC algorithm employed, due to the upper
limit of 50 Mbps set in our experiments. Nonetheless, there is
still a notable proportion of sessions that can derive benefits
from the implementation of Pudica.

Frame bitrate. As depicted in Fig. 8g and 9g, Pudica
achieves a 1.10× and 1.19× bitrate enhancement on aver-
age over the Ethernet and WiFi networks, respectively. While
Salsify outperforms Pudica in average bitrate for WiFi scenar-
ios, its average delay and stall rate is 5.8× and 9.2× higher
than Pudica, respectively. From Fig. 8h and Fig. 9h, we can
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Figure 10: Convergence ability evaluation for efficiency and fairness through a large-scale, in-the-wild network testing platform [24].

Copa Salsify SQP Pudica

0.2

0.4

0.6

0.8

1.0

Bi
tra

te
 d

ist
rib

ut
io

n 
fo

r f
ra

m
es

 o
f >

50
m

s

Copa Salsify SQP Pudica
0

8

16

24

32
# 

of
 st

al
le

d 
fra

m
es

pe
r s

ta
ll 

ev
en

t
<10Mbps 10-20Mbps 20-30Mbps 30-40Mbps >40Mbps

Figure 11: The proportion of different bitrates for frames with a delay
greater than 50 ms (Left), and the average number of consecutively
stalled frames per occurrence of stall event (Right).

see that Pudica achieves the highest valid bitrate over both
Ethernet and WiFi networks.

Deeper analysis. To gain a better understanding of how
Pudica reduces the stall rate and cuts the delay tail, we fo-
cused on frames with large delays and observed how these
CC schemes respond to stalls. In Fig. 11, we present the bi-
trate distribution for frames with a delay exceeding 50 ms
(left-side), and the number/bitrate of consecutively stalled
frames per occurrence of stall event (right-side). Here, we set
a threshold of 100 ms for judgment of stall events/frames. Our
analysis shows that for Pudica, low-bitrate (<10 Mbps) frames
make up more than half of frames with a delay exceeding 50
ms (similar results for consecutively stalled frames), indicat-
ing Pudica’s superior performance in reducing CC-induced
queuing. When a stall event occurs, Pudica can quickly re-
spond to it by reducing the bitrate, resulting in a significant
reduction in the average stall count to 10.9 frames.

5.3 In-the-Wild Evaluation for Efficiency and Fairness

We used a large-scale network test platform [24] (detailed
in Appendix E) to evaluate the efficiency and fairness of
various CC algorithms, as well as the speed at which they
reached "steady state" and "fair state". A flow is deemed to
be in a steady state if it does not experience a bitrate change
exceeding 2% within the last two seconds. The fair state is
defined as a situation wherein the mean throughput of any two
flows does not diverge by more than 20% within a two-second
interval, or both flows have reached steady states.

Efficiency. Efficiency and its convergence are measured by
bandwidth utilization and the duration necessitated for each
algorithm to attain the steady state. Each test involved mea-
suring available bandwidth over a 90-second span, followed
by the random selection and execution of one CC algorithm
for 60 seconds. The average bandwidth utilization of the last
30 seconds of each test was calculated, as shown in Fig. 10a.

The findings indicate that Pudica achieved an average utiliza-
tion of 77.6%, while SQP, Copa, and Salsify achieved 76.8%,
70.8%, and 68.7%, respectively. Fig. 10b plots the time to
reach a steady state. The majority of flows (>80%) in Pu-
dica and Salsify converged within 6 seconds, whereas SQP
required an average of 9.7 seconds to reach a steady state.

Fairness. Fairness and its convergence are measured using
Jain’s fairness index and the time necessitated for each al-
gorithm to reach the fair state. In each test, we initiated one
flow, followed by the second and third flows with the same
algorithm after 20 and 40 seconds, respectively. Jain’s fair-
ness index was calculated using the throughput data collected
during the 45-60 second interval, as plotted in Fig.10c. Pudica
achieved an average fairness index of 0.95, while SQP, Copa,
and Salsify achieved 0.735, 0.965, and 0.947, respectively.
Fig. 10d illustrates the time to reach the fair state. We can see
that, Salsify achieved the fastest fairness convergence, while
SQP required the longest time to converge to a fair state.

Summary. Pudica provides high utilization and good fair-
ness, while also achieving rapid convergence to both. Con-
sequently, Pudica strikes a better balance between efficiency,
fairness, and low latency, compared to the baselines.

5.4 Pudica Deep Dive over Emulation

We assessed Pudica’s convergence capability over the Mahi-
mahi emulation [37], elucidating the reason for improvement.

Consistent convergence to low-queuing efficiency. As de-
picted in Fig. 12, Pudica exhibits a faster and more stable
adaptation to network variations, both in terms of bandwidth
decrease and increase, compared to the baselines. When the
bandwidth abruptly reduces, Pudica employs the active queue
draining mechanism (§4.3) to trigger a dramatic bitrate fall-
back in response to congestion. This allows Pudica to quickly
empty the queue, a process that typically takes only 200 ms.
Once the queue has been emptied, Pudica recovers the bitrate
by one step, ensuring a reasonable level of link utilization.
This strategy also provides Pudica with robustness against
network jitters, as demonstrated in Appendix F. As a con-
sequence, Pudica achieves a superior balance between low
queuing and efficiency. On the other hand, SQP exhibits slow
adaptation to reduced bandwidth, taking nearly five seconds
to drain the queue, resulting in high delay spikes and pro-
longed stall duration. Salsify and Copa are badly sensitive
to both transient packet queuing and empty queues, causing
choppy rate decisions and persistent delay oscillations.
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Figure 12: Comparison of convergence to low-queuing efficiency: bitrate and delay of each frame as the bandwidth alters. Pudica reconciles the
low queuing delay and high bandwidth utilization by merging responsive queue draining and rapid, stable bandwidth approaching.
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Figure 13: Comparison of fairness convergence: bitrate and delay of each frame for multiple competing flows as they gradually enter and quit.
Up to three flows share a 30 Mbps bottleneck. Pudica achieves rapid, stable convergence to fairness with sustaining low frame delays.

Rapid and stable convergence to fairness. As shown in
Fig. 13, Pudica achieves rapid and consistent fairness conver-
gence for both throughput and delay whenever a new stream
enters or leaves the same link. Pudica also prevents the for-
mation of significant queues in the presence of competing
flows. SQP utilizes an essentially MIMD-based rate adjust-
ment approach, leading to poor fairness, especially when a
slow-start newcomer encounters multiple existing high-bitrate
flows. Further, multiple concurrent SQP flows would mistak-
enly regard each other as the buffer-filling flow and enter the
competing mode by continually raising the estimate of min-
imum delay, resulting in an increasing delay. While Salsify
and Copa achieve decent fairness, they suffer from significant
bitrate and delay oscillation when multiple flows are present.

5.5 Microbenchmark

We conducted a microbenchmark in real networks to quantify
the contribution of different design elements to overall per-
formance. We plot the key evaluation results in Fig. 14 and
provide more detailed information in Appendix G.

Different BUR estimation methods. We replaced the BUR
estimator in Pudica with the network estimation methods in-
troduced in SQP [20] and Salsify [13]. SQP uses the frame as
a burst to probe the available bandwidth, while Salsify utilizes
packet trains to probe the available capacity. Therefore, these
methods do not directly estimate the BUR indicator. That
being said, we evaluated the performance of their probing
methods within the Pudica framework. To accomplish this,
we considered the ratio of the current bitrate to the estimated
available bandwidth/capacity as the BUR estimation in the
Pudica variants. As depicted in Fig. 14a, Pudica achieves
lower stall rates and tailed delay, particularly in multi-flow

scenarios, when compared to the variants. This confirms the
advantages of our BUR estimation approach.

AI-MD v.s. AI/MD. Fig. 14a also compares the strategy of
simultaneous AI and MD in Pudica (i.e., AI-MD) with the tra-
ditional AI/MD method. For AI/MD, we additively increase
the bitrate when the BUR is between α and one; we multi-
plicatively decrease the bitrate when the BUR exceeds one.
Our findings demonstrate that Pudica with AI/MD achieves
comparable performance to AI-MD in single-flow scenarios.
However, when three flows operate simultaneously on the
same link, AI-MD exhibits the advantage of reducing stall
rate and tailed delay (as well as fairness, see Appendix G).

Temporary bitrate fallback and active queue draining.
Fig. 14b evaluates the contributions of two bitrate adjustment
methods driven by short-term BUR signals (§4.3). Evidently,
the introduction of temporary fallback and active queue drain-
ing significantly improves the stall rate and tailed delay.

Sensitivity analysis for algorithm parameters. We as-
sessed the impacts of several parameter choices in Pudica. Tab.
6 in the Appendix shows that Pudica maintains consistent per-
formance across various parameter configurations, indicating
its lesser dependence on specific parameter settings.

6 Discussion
Granularity for periodic bursts. Pudica uses a network
probing approach where all packets within a frame are treated
as a burst, minimizing sender-side delay and aligning with
our focus on frame-level end-to-end delay. This granularity is
suitable for our context. However, periodic burst transmission
at different granularities could also be effective, especially for
applications beyond frame-level performance assessment.
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Figure 14: Key microbenchmark results: (a) Different BUR estimation; AI-MD v.s. AI/MD. (b) Responsive reaction.

Balancing feedback usefulness and cross-traffic detection.
Pudica may intentionally slow the pace multiplier to boost
the chance of detecting competing flows. While this packet
pacing may reduce feedback usefulness by eliminating packet
queuing, it shortens the agnostic period and lessens BUR
underestimation due to cross flow unawareness. This is a
trade-off between feedback precision and flow detection. Our
method may overrate BUR compared to fully bursty transmis-
sion, impacting efficiency convergence. However, it improves
delay performance, a more fitting trade-off for cloud gaming.

Handling packet losses. Since Pudica estimates available
bandwidth based on the actual arrived size of frames, it would
inherently respond to packet losses, triggering bitrate de-
creases, due to the reduced amount of arrived packets when
losses occur. However, the nature of the frame-as-a-whole
sending pattern in video streaming, coupled with various types
of network bottlenecks, can still result in losses despite BUR
being below 100% (e.g. in shallow buffer scenarios), causing
additional frame delays and unnecessary bitrate downgrades.
Moving forward, our research aims to explore practical strate-
gies for mitigating the impact of packet losses through both
proactive and reactive ways.

Competitiveness with buffer-filling flows. Pudica achieves
a decent fairness for homogeneous flows. However, unlike
mode-switched CC methods (e.g., Copa [11], Nimbus [33]),
Pudica does not explicitly compete with buffer-filling or in-
elastic flows. Instead, Pudica concedes to them by lowering
the bitrate whenever the queue becomes full. This approach
is adopted because sacrificing delay for high bitrate is mean-
ingless for cloud gaming. Actually, Pudica keeps fair com-
petitiveness with loss-based flows under the circumstance of
shallow bottleneck buffers (see Appendix H).

User-centric QoE optimization. Pudica primarily aims to
achieve the highest possible bitrate while maintaining low
latency. However, it may not necessarily result in the optimal
user QoE. For instance, excessively high bitrates may only
marginally enhance video quality but can make the streaming
session more susceptible to bandwidth fluctuations. In the
future, we will explore the opportunity that leverages cross-
layer and user-centric approaches (e.g., introducing visual
quality instead of bitrate) to further enhance player QoE.

Potential gains for other low-latency applications. While
Pudica is designed for cloud gaming, we believe that the con-
cepts and principles embedded within our CC framework

could be beneficial for other networked applications that re-
quire both low latency and high throughput. We intend to
investigate its potential across various domains.

7 Other Related Work
Prior works [22, 23, 35, 38] utilize explicit signals to judge
the precise level of utilization or congestion, enabling con-
vergence to both low queuing, efficiency, and fairness. How-
ever, it remains challenging to deploy these methods at scale.
Nimbus [33] tries to detect the elasticity of cross traffic and
dynamically switches between throughput-competitive and
delay-controlling modes based on its detection. It still prior-
itizes throughput over delay, which is unable to satisfy the
need for consistent low delay. Several works explore the use
of deep reinforcement learning on bitrate adaptation for video
telephony [14–16]. They partly imitate the behavior of GCC
agents or take GCC as the protective backup, thereby with
similar limitations as GCC. Moreover, cross-flow fairness is
not carefully handled by these methods. A detailed compar-
ison between our network probing method and traditional
packet-train techniques is included in Appendix I.

8 Conclusion
We present Pudica, a practical congestion control (CC) algo-
rithm designed for cloud gaming systems. Given a constraint
of near-empty bottleneck queues, we rethink how to achieve
efficiency and fairness in end-to-end CC design, regardless
of single-flow or multiple-flow scenarios. To reach this goal,
we propose a novel network probing method to estimate the
bandwidth utilization ratio (BUR) of the bottleneck link. By
leveraging both long-term and short-term BUR estimations,
we design several intuitive but effective control strategies to
minimize the queuing delay while maintaining efficiency and
fairness. By conducting large-scale experiments on Tencent
START cloud gaming services in both wired and wireless
networks, we demonstrate that Pudica considerably reduces
the frame delay and stall rate while preserving high bitrate
and decent fairness, compared to the alternatives.
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Figure 15: Fairness convergence trajectory for the traditional AI/MD paradigm and our AI-MD method (i.e., simultaneous AI and MD). Here,
these diagrams are presented for illustration purposes and do not exactly align with the proposed algorithms in Pudica.

One flow adopted our probing strategies and was set to a fixed
bitrate B. The other flow acted as the competing flow with a
random pace multiplier (to simulate complex traffic patterns)
and the same bitrate B. To evaluate the performance of various
BUR estimation methods, we use the ratio (2×B)/C as the
actual BUR. This allowed us to assess how well the estimation
methods performed in estimating the true BUR.

B Sample Weights for Smoothed BUR Compu-
tation

Due to the interdependence of sending behaviors and network
feedback, we assign different weights to the BUR samples to
enhance estimation robustness. Specifically, we set:

ω
I
k = min

(
Rk +1, 2

)
, (12)

ω
II
k = min

(
Bk +10, 50

)
, (13)

ω
III
k = k+20, (14)

ωk =
ωI

k ×ωII
k ×ωIII

k

∑
Npacket
j=1 ωI

j ×ωII
j ×ωIII

j

. (15)

ωk symbolizes the importance weight given to the k-th BUR
sample, comprising three elements. ωI

k assigns higher impor-
tance to samples with longer frame delays, as they spend more

time in flight. ωII
k assigns higher importance to samples with

larger frame sizes, as they exhibit greater estimation robust-
ness against delay jitters. ωIII

k assigns higher importance to
more recent samples, as they provide fresher feedback.

C Fairness Convergence Trajectory for Differ-
ent AI-and-MD Schemes

As referenced in [41], we plotted the trajectories of a two-flow
system starting from the same point using various AI-and-
MD policies via numerical simulation, which is depicted in
Fig. 15. On the figures, the horizontal axis represents the
bandwidth allocation ratio of Flow 1 (denoted by x1), while
the vertical axis corresponds to Flow 2 (denoted by x2). Al-
locations satisfying x1 + x2 = 1 indicate efficient allocations,
representing 100% bandwidth utilization (refer to Efficiency
line). Allocations satisfying x1 = x2 represent fair allocations
(refer to Fairness line). The optimal point is the intersection
of these two lines. The objective of control schemes should
be to converge the system to this optimal point, irrespective
of the initial position.

In the AI/MD method (see Fig. 15a), we additively increase
the bitrate when the BUR exceeds α but remains below one;
we multiplicatively decrease the bitrate by 15% when the
BUR surpasses one. For AI-MD methods, Fig. 15b illustrates
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Figure 16: Preliminary validation: the performance of various base-
line algorithms using Mahimahi emulations with a plain trace featur-
ing a constant bandwidth of 20 Mbps.

the trajectory of AI-MD with a bitrate-independent adaptive
AI scheme, where the AI step (i.e., I) is linearly increased. In
contrast, the AI-MD method in Pudica (see Fig. 15c) adopts a
bitrate-dependent adaptive AI scheme, where the magnitude
of increased AI steps (i.e., ∆I) is inversely proportional to the
bitrate. Compared to the AI/MD method, AI-MD reduces the
occurrences of over-sending and thus lowers the average queu-
ing delay, by executing MD before queue construction. At
the same time, AI-MD speeds up fairness convergence by in-
creasing the frequency of throughput reallocation. Moreover,
the implementation of bitrate-dependent AI step adaptation
further enhances the convergence speed toward fairness.

D Preliminary Evaluation for Various CC Al-
gorithms through Emulation

Prior to conducting large-scale experiments over the Internet,
we evaluated Pudica and the other potential solutions (i.e.,
GCC [12], Copa [11], Salsify [13], and SQP [20]) on the
Mahimahi network emulator [37]. These evaluations were
performed using a trace that maintained a constant bandwidth
of 20 Mbps and RTTs of 20 ms. As depicted in Fig. 16, Pu-
dica and SQP achieve consistent bandwidth convergence with
negligible queuing delays. Salsify and Copa maintain low
frame delays in spite of significant oscillations in bitrates.
In contrast, GCC fails to consistently achieve low latency,
displaying periodic delay spikes even under a constant band-
width. Therefore, we selected Pudica, Salsify, Copa, and SQP
for further performance testing at scale (shown in §5.2).

E A Large-Scale Dummy Client Platform
In our study, we utilized a specialized dummy client platform
called Bonree [24], instead of the real-user platform (i.e.,
START [9]), to evaluate the convergence ability of efficiency
and fairness in the wild. We opted for the Bonree platform
due to the additional client privileges required for testing
the aforementioned metrics, such as the permission to run
multiple streams simultaneously. These privileges cannot be
accommodated by our profit-oriented cloud gaming services.

Bonree offers millions of end devices (e.g., PCs) distributed
globally to emulate real user clients. These end devices pos-
sess computing capacities and network resources similar to
those commonly used by consumers. They can install cus-
tomized software, e.g., the cloud gaming client app, and es-
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Figure 17: Robustness test with a 40 ms jitter per period of 500
ms. Pudica achieves a good balance between fast responsiveness to
potential congestion and jitter resilience.

tablish connections with the cloud gaming servers designated
by us over the Internet. As a result, the gaming server can
transmit frame streams to these end devices and receive their
feedback. Additionally, these devices can record the necessary
logs as per our requirements. Unlike real users, we can im-
pose more demands on these devices without concerns about
user experience. Thus, we employed Bonree to conduct exper-
iments regarding efficiency and fairness convergence. Note
that the end devices on Bonree communicate with servers
through fully public networks. Consequently, the information
within the network remains unknown.

F Pudica Robustness to Network Jitters
In Fig. 17, we assessed Pudica’s robustness to delay jitters by
introducing a 40ms jitter every 500ms period. While this jitter
delays some packet arrivals, it does not impact the bandwidth.
These delayed packets eventually reach the receiver with sub-
sequent packets, leading to a burst arrival. The results show
that Pudica effectively balances sensitivity to high delay and
resilience against jitters. While SQP shows strong robustness
to jitters, it struggles with slow bandwidth adaptation (Fig.
12). The burst packet arrival can mislead Salsify and Copa
to momentarily overrate network conditions, which causes
bitrate overshoots and high delay spikes.

G Additional Microbenchmark Results
This section presents more statistics from our microbench-
mark experiment. Tab. 3 and Tab. 4 showcase the perfor-
mances of multiple Pudica variants under a single flow and
three simultaneous flows, respectively. These experimental re-
sults confirm the efficacy of Pudica’s BUR estimation method
and AI-MD technique. For Pudica with AI/MD, we substi-
tute our AI-MD scheme with the sole additive increase when
α < BUR ≤ 1. MD operations will be triggered by our queue-
draining scheme when BUR > 1. Tab. 5 shows the effective-
ness of Pudica’s control schemes driven by short-term BUR
signals in reducing tail delays and stall rates. Tab. 6 presents
Pudica’s performance under various parameter settings.

H Competitiveness with Buffer-Filling Flows
Figure 18 depicts the Pudica performance when it encounters
a buffer-filling flow. Upon initiating a Pudica flow, we subse-
quently launched and terminated a Cubic flow [42] at 5s and



Algo. Avg.
delay

95%/99%
-tile delay

Stall rate
>50/100/200ms

Avg.
bitrate

Vanilla Pudica 18.0ms 22.3/29.2ms 0.73%/0.09%/0.0083% 46.940Mbps
Pudica w/ BUR estimation of SQP 20.1ms 26.1/39.0ms 1.25%/0.21%/0.0229% 47.103Mbps

Pudica w/ BUR estimation of Salsify 18.4ms 22.9/34.2ms 0.84%/0.13%/0.015% 41.164Mbps
Pudica w/ AI/MD 18.3ms 22.7/32.2ms 0.91%/0.10%/0.0117% 46.181Mbps

Table 3: Microbenchmarks: the performance of different Pudica variants when launching a single flow.

Algo. Avg.
delay

95%/99%
-tile delay

Stall rate
>50/100/200ms

Avg.
bitrate

Fairness
index

Vanilla Pudica 21.5ms 29.2/38.6ms 1.60%/0.11%/0.0164% 31.962Mbps 0.958
Pudica w/ BUR estimation of SQP 31.9ms 49.2/67.5ms 9.77%/0.42%/0.0391% 33.132Mbps 0.952

Pudica w/ BUR estimation of Salsify 21.7ms 34.2/51.8ms 2.81%/0.25%/0.0538% 33.185Mbps 0.941
Pudica w/ AI/MD 22.3ms 32.8/61.2ms 2.10%/0.29%/0.0747% 32.209Mbps 0.944

Table 4: Microbenchmarks: the performance of different Pudica variants when simultaneously launching three flows on the same link.

Algo. Avg.
delay

95%/99%
-tile delay

Stall rate
>100/200ms

Avg.
bitrate

Vanilla Pudica 20.6ms 27.3/33.6ms 0.17%/0.009% 46.21Mbps
Pudica w/o temporary bitrate fallback 20.9ms 28.4/38.3ms 0.29%/0.031% 46.19Mbps

Pudica w/o active queue draining 23.7ms 36.0/60.5ms 1.40%/0.193% 47.16Mbps
Table 5: Microbenchmarks: performances of multiple Pudica variants to explain the contribution of our short-term BUR-driven control schemes.

Algo. Avg.
delay

95%/99%
-tile delay

Stall rate
>100ms

Avg.
bitrate

Pudica 18ms 21.3/28.5ms 0.061% 47.86Mbps
α=0.8 17.9ms 21.3/29.1ms 0.075% 47.55Mbps
α=0.9 18.8ms 21.9/28.0ms 0.049% 48.28Mbps

γMI=0.20 18.5ms 22.1/30.7ms 0.084% 47.26Mbps
γMI=0.25 17.8ms 21.4/28.1ms 0.08% 48.14Mbps
ζ=10% 18.5ms 22.4/30.4ms 0.066% 47.99Mbps
ζ=20% 18.9ms 21.5/27.9ms 0.054% 47.42Mbps
Twd=150 18.5ms 22.0/30.6ms 0.058% 47.96Mbps
Twd=250 18.4ms 21.6/28.6ms 0.066% 47.82Mbps

Table 6: Sensitivity analysis for algorithm parameters.

10s, respectively. We can see that Pudica exhibits a certain
level of competitiveness when the buffer size of the bottle-
neck queue is small. However, when the buffer size increases,
Pudica fails to compete effectively against Cubic.

I Difference Between Our BUR Estimation
and Traditional Packet-Train Methods

Pudica leverages all packets within a frame as a short burst,
which can be regarded as a packet train, to probe the link
condition. The difference between our method and traditional
packet-train network estimation approaches lies in what ex-
actly to estimate and how to probe.

Traditional packet-train methods [43, 44] utilize the disper-
sion of a packet train, i.e., the gap in arrival time between
the first and last packets, to estimate the available bandwidth
or capacity. For a detailed definition of packet train and its
estimation method, see [43]. In a single-flow environment,
packet-train dispersion indicates the bottleneck link capacity,
which also represents the available bandwidth. However, for
a multi-flow scenario, the estimated value by these methods
is actually neither available bandwidth nor capacity [45].

By contrast, Pudica leverages the queuing delay of a packet
train to estimate the link utilization (i.e., BUR) during a frame
interval. As per [43], a link is either transmitting at full capac-
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(a) Buffer size: 10,000 bytes.

0 5000 10000 15000
Timeline (ms)

0

20

40

60

Fr
am

e 
bi

tra
te

(M
bp

s) Pudica Bandwidth

(b) Buffer size: 50,000 bytes.
Figure 18: Pudica performance in the presence of a Cubic flow, with
different buffer size settings of the bottleneck queue.

ity or idle at any given moment, meaning its instantaneous
utilization is either zero or one. Therefore, BUR is defined
as the time-averaged instantaneous utilization over a specific
interval. In our case, this interval is the frame sending interval
(i.e., L), typically 16.67 ms for a 60 frame rate. Then, the
BUR of the time period (t, t +L) can be expressed as:

R(t, t +L) =
1
L

∫ t+L

t
r(x)dx (16)

where r(x) is the instantaneous link utilization at time x.
Traditional packet-train probing methods typically imple-

ment a fixed pace multiplier (as defined in §2.1). These meth-
ods can only adjust the pacing rate by resorting to bitrate
adjustments. In contrast, Pudica introduces an adaptive pace
multiplier algorithm that enables appropriate queuing even
when the bitrate remains unchanged. Another difference is
that Pudica proposes a supplementary probing technique via a
small number of probe packets beyond application data. This
method enables Pudica to effectively probe the link condition
even during the agnostic period.

Note that in Pudica, the BUR probing and estimation
method introduced in §4.1 is only used when the link uti-
lization is below one. When the link utilization exceeds one,
the agnostic period is eliminated, and we rely on the packet
receiving rate to estimate the available bandwidth (see §4.3),
which is similar to traditional packet-train techniques.
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